
pFUnit 3.0 Tutorial
Advanced

Tom Clune

Advanced Software Technology Group
Computational and Information Sciences and Technology Office

NASA Goddard Space Flight Center

April 10, 2014

Tom Clune (ASTG) Session II April 10, 2014 1 / 90

Outline

1 Introduction
Overview

2 API - Advanced

3 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session II April 10, 2014 2 / 90

Outline

1 Introduction
Overview

2 API - Advanced

3 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session II April 10, 2014 3 / 90

Class Overview

Primary Goals:

Learn how to use pFUnit 3.0 to create and run unit-tests

Learn how to apply test-driven development methodology

Prerequisites:

Access to Fortran compiler supported by pFUnit 3.0

Familiarity with F95 syntax

Familiarity with MPI1

Beneficial skills:

Exposure to F2003 syntax - esp. OO features

Exposure to OO programming in general

1MPI-specific sections can be skipped without impact to other topics.
Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session II April 10, 2014 4 / 90

Syllabus

Thursday PM - Introduction to pFUnit
I Overview of pFUnit and unit testing
I Build and install pFUnit
I Simple use cases and exercises
I Detailed look at framework API

Friday AM - Advanced topics (including TDD)
I User-defined test subclasses
I Parameterized tests
I Introduction to TDD
I Advanced exercises using TDD

Friday PM - Bring-your-own-code
I Incorporate pFUnit within the build process of your projects
I Apply pFUnit/TDD in your own code
I Supplementray exercises will be available

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session II April 10, 2014 5 / 90

Materials

1 You will need access to one of the following Fortran compilers to do
the hands-on portions

I gfortran 4.9.0 (possibly available from cloud)
I Intel 13.1, 14.0.2 (available on jellystone)
I NAG 5.3.2

2 Last resort - use AWS
I ssh keys are at ftp://tartaja.com
I user name: pfunit@tartaja.com passwd: iuse.PYTHON.1969
I login: ssh -i user1 user1@54.209.194.237

3 You will need a copy of the exercises in your work environment
I Browser: https://modelingguru.nasa.gov/docs/DOC-2529
I Jellystone:

/picnic/u/home/cacruz/pFUnit.tutorial/Exercises.tar

4 These slides can be downloaded at
https://modelingguru.nasa.gov/docs/DOC-2528

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session II April 10, 2014 6 / 90

ftp://tartaja.com
pfunit@tartaja.com
iuse.PYTHON.1969
https://modelingguru.nasa.gov/docs/DOC-2529
/picnic/u/home/cacruz/pFUnit.tutorial/Exercises.tar
https://modelingguru.nasa.gov/docs/DOC-2528

Outline

1 Introduction

2 API - Advanced
API: pFUnit test Hierarchy
API: Misc
Parser: Advanced

3 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 7 / 90

Peeking under the hood - what is inside pFUnit?

www.shescribes.com

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 8 / 90

www.shescribes.com

Outline

1 Introduction

2 API - Advanced
API: pFUnit test Hierarchy
API: Misc
Parser: Advanced

3 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 9 / 90

Hierarchy of Test Classes

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 10 / 90

Test

Role: Abstract base class for all test objects.
Implementation: Framework provides various subclasses for
common/generic cases. Users can define custom subclasses for specific
purposes. Provided subclasses include:

TestCase

TestMethod

MpiTestCase

MpiTestMethod

TestSuite

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 11 / 90

TestSuite

Role: Aggregates collection of tests into single entity.
Implementation: TestSuite objects are simultaneously Test objects and
collections of tests. Run() method applies run() to each contained test.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 12 / 90

TestCase class

Role: Abstract Test subclass that provides some services that are common
to most Test subclasses.
Implementation:

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 13 / 90

TestMethod class

Role: Simple concrete Test subclass that supports the common case
where test procedure receives no arguments.
Implementation: Constructor stores a procedure pointer to vanilla
Fortran subroutine with no arguments. A restricted form of test fixture is
permitted by specifying setUp() and tearDown() methods that also have
no arguments. (I.e. fixture is not encapsulated.)

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 14 / 90

TestMethod API

Constructor:

function TestMethod(name , method[, setUp , tearDown])

character(len=*), intent(in) :: name

procedure(empty) :: method

procedure(empty) :: setUp

procedure(empty) :: tearDown

Methods:

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 16 / 90

ParameterizedTestCase class

Role: Allows a single test procedure to be execute multiple times with
different input values.
Implementation: ParameterizedTestCase objects contain an
AbstractTestParameter object that encapsulates input. Subclasses of
ParameterizedTestCase must generally also subclass
AbstractTestParameter.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 17 / 90

MpiTestCase class

Role: (Abstract) Extends ParameterizedTestCase with support for MPI.
Implementation: MpiTestCase modifies the runBare() launch mechanism
to create an appropriately sized MPI group and corresponding
subcommunicator. Processes within that group then call the user’s test
procedure, while any remaining processes wait at a barrier.
MPI based tests must not use MPI_COMM_WORLD, and must instead obtain
MPI context from the passed test object.
The following convenient type-bound procedures are provided:

getProcessRank () ! returns rank within group

getNumProcesses () ! returns size of group

getMpiCommunicator () ! returns the bare MPI communicator

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 19 / 90

MpiTestMethod class

Role: Simple concrete Test subclass that supports common MPI cases
that just need basic MPI context.
Implementation: Analogous to the vanilla TestMethod, except that user
test procedures are now passed an object which must be queried for any
MPI context that the test needs.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 20 / 90

MpiTestMethod API

Constructor:

function MpiTestMethod(name , method , numProcesses , [, setUp , tearDown])

character(len=*), intent(in) :: name

procedure(empty) :: method

integer :: numProcesses ! requested

procedure(empty) :: setUp

procedure(empty) :: tearDown

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 22 / 90

Outline

1 Introduction

2 API - Advanced
API: pFUnit test Hierarchy
API: Misc
Parser: Advanced

3 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 23 / 90

TestResult class

Role: “Scorecard” – accumulates information about tests as they run.
Implementation: Each run() method for Test objects has a mandatory
TestResult argument. The Visitor pattern is used to allow the TestResult
object to manage and monitor the test as it progresses.
Note: Visitor is a somewhat advanced pattern and uses OO capabilities in
a nontrivial manner. Users should not need to be aware of this, but
developers of framework extensions likely will.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 24 / 90

Abstract BaseTestRunner class

Role: Runs a test (usually a TestSuite).
Implementation: Run() method constructs and configures a TestResult
object, then runs the passed Test object.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 25 / 90

TestRunner class

Role: Default Runner for pFUnit.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 26 / 90

RobustRunner class

Role: Runner subclass that executes tests within a separate process.
Implementation: Collaborates with SubsetRunner. RobustRunner restarts
SubsetRunner if it detects a hang or a crash. Currently a bit unreliable.
(Irony)

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 27 / 90

Outline

1 Introduction

2 API - Advanced
API: pFUnit test Hierarchy
API: Misc
Parser: Advanced

3 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 28 / 90

Annotations: @testCase

@testCase

@testCase(<options >)

Indicates next line defines a new derived type which extends TestCase.
All test procedures in file must accept a single argument of that
extended type.
Accepts the following options:

I constructor=<name> Specifies the name of the function to construct
corresponding test object. Default is a constructor with same name as
derived type2

I npes=[<list-of-integers>] Indicates that extension is a subclass
of MpiTestCase, and provides a default set of values for NPES for all
test procedures in the file. Individual tests can override.

I esParameters={expr} Indicates that extension is a subclass of
ParameterizedTestCase, and provides a default set of parameters for all
tests in the file. Can be overridden by each test.

I cases=[<list-of-integers>] Alternative mechanism for specifying
default test parameters where a single integer is passed to the test
constructor.

2This F2003 feature is somewhat unreliable - esp. prior to 14.0.2.
Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 30 / 90

Annotations: @testParameter

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 32 / 90

Encapsulated test fixture

1 module SomeTests mod
2 use pFUnit mod
3 i m p l i c i t none
4 @testCase
5 type , e x t e n d s (TestCase) : : MyTestCase
6 r e a l , a l l o c a t a b l e : : x I n i t i a l (:)
7 c o n t a i n s
8 p r o c e d u r e : : setUp
9 p r o c e d u r e : : tearDown

10 end t y p e MyTestCase
11 c o n t a i n s
12
13 s u b r o u t i n e setup (t h i s)
14 c l a s s (MyTestCase) , i n t e n t (i n o u t) : : t h i s
15 x I n i t i a l = [1 . , 3 . , 5 . , 3 . , 1 .]
16 end s u b r o u t i n e setup
17
18 s u b r o u t i n e tearDown (t h i s)
19 c l a s s (MyTestCase) , i n t e n t (i n o u t) : : t h i s
20 d e a l l o c a t e (t h i s%x I n i t i a l)
21 end s u b r o u t i n e tearDown

...

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 34 / 90

Encapsulated test fixture (cont’d)

...

23 @test
24 s u b r o u t i n e a n o t h e r T e s t (t h i s)
25 c l a s s (MyTestCase) , i n t e n t (i n o u t) : : t h i s
26
27 r e a l , a l l o c a t a b l e : : x (:)
28
29 x = oneStep (t h i s%x I n i t i a l)
30 @asse r tEqua l (. . .)
31
32 end s u b r o u t i n e a n o t h e r T e s t
33
34 end module MyTests mod

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 36 / 90

Encapsulated test fixture (cont’d)

What you need to know:

Declare derived type that EXTEND’s TestCase

Annotate TestCase extention with @testCase

Declare TYPE-BOUND procedures: setUp and tearDown

Annotate test procedure in usual way with @test

Declare single test procedure argument as

c l a s s (<your type >) , i n t e n t (i n o u t) : : <dummy>

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 38 / 90

MPI test fixture
1 module SomeMpiTests mod
2 use pFUnit mod
3 i m p l i c i t none
4
5 @testCase (npes = [1 , 3 , 5])
6 type , e x t e n d s (MpiTestCase) : : MyTestCase
7 i n t e g e r : : rank , npes
8 i n t e g e r : : peEast , peWest
9 c o n t a i n s

10 p r o c e d u r e : : setUp
11 p r o c e d u r e : : tearDown
12 end t y p e MyTestCase
13
14 c o n t a i n s
15
16 s u b r o u t i n e setup (t h i s)
17 c l a s s (MyTestCase) , i n t e n t (i n o u t) : : t h i s
18 i n t e g e r : : rank , npes
19 t h i s%rank = t h i s%g e t P r o c e s s R a n k ()
20 t h i s%npes = t h i s%getNumProcesses ()
21 t h i s%peWest = mod(t h i s%rank + t h i s%npes − 1 , t h i s%npes)
22 t h i s%peEast = mod(t h i s%rank + 1 , t h i s%npes)
23 end s u b r o u t i n e setup

...
Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 40 / 90

MPI test fixture (cont’d)

...

24
25 @test
26 s u b r o u t i n e a n o t h e r T e s t (t h i s)
27 c l a s s (MyTestCase) , i n t e n t (i n o u t) : : t h i s
28
29 i n t e g e r : : comm
30 r e a l : : x (0 : 2)
31
32 comm = t h i s%getMpiCommunicator ()
33
34 c a l l someMpiProcedure (comm, x)
35
36 @mpiAssertEqual (t h i s%peWest , x (0))
37 @mpiAssertEqual (t h i s%rank , x (1))
38 @mpiAssertEqual (t h i s%peEast , x (2))
39
40 end s u b r o u t i n e a n o t h e r T e s t
41
42 end module MyTests mod

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 42 / 90

MPI test fixture (cont’d)

What you need to know:

Declare derived type that EXTEND’s MpiTestCase

Annotate TestCase extention with @testCase
I Optionally specify default npes list: (npes=[...])

Declare TYPE-BOUND procedures: setUp and tearDown

Annotate test procedure in usual way with @test

Declare single test procedure argument as

c l a s s (<your type >) , i n t e n t (i n o u t) : : <dummy>

Use @mpiAssert∗ to synchronize returns

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 44 / 90

Parameterized tests

Suppose you want to test an interface using variant input data:

E.g. sorting a list ...

list = sort ([1,2,3,4])

list = sort ([4,3,2,1])

list = sort ([1,4,2,3])

list = sort ([1,2,3,1])

or varying boundary conditions...

call solve(x, BC=’dirichlet ’)

call solve(x, BC=’neumann ’)

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 46 / 90

Parameterized tests

Suppose you want to test an interface using variant input data:
E.g. sorting a list ...

list = sort ([1,2,3,4])

list = sort ([4,3,2,1])

list = sort ([1,4,2,3])

list = sort ([1,2,3,1])

or varying boundary conditions...

call solve(x, BC=’dirichlet ’)

call solve(x, BC=’neumann ’)

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 46 / 90

Parameterized tests

Suppose you want to test an interface using variant input data:
E.g. sorting a list ...

list = sort ([1,2,3,4])

list = sort ([4,3,2,1])

list = sort ([1,4,2,3])

list = sort ([1,2,3,1])

or varying boundary conditions...

call solve(x, BC=’dirichlet ’)

call solve(x, BC=’neumann ’)

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 46 / 90

Parameterized tests (cont’d)

One simple strategy is to just duplicate tests:

@test

subroutine test1 ()

@assertEqual ([1,2,3,4], sort ([1 ,2 ,3,4]))

end subroutine test1

@test

subroutine test2 ()

@assertEqual ([1,2,3,4], sort ([4 ,3 ,2,1]))

end subroutine test2

...

This can be quite tedious if there are many cases and/or the tests are
more complex.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 48 / 90

Parameterized tests (cont’d)

One simple strategy is to just duplicate tests:

@test

subroutine test1 ()

@assertEqual ([1,2,3,4], sort ([1 ,2 ,3,4]))

end subroutine test1

@test

subroutine test2 ()

@assertEqual ([1,2,3,4], sort ([4 ,3 ,2,1]))

end subroutine test2

...

This can be quite tedious if there are many cases and/or the tests are
more complex.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 48 / 90

Parameterized tests (cont’d)

Another approach is to loop within a test

@test
s u b r o u t i n e t e s t ()

r e a l , a l l o c a t a b l e : : x (:)

c a l l c h e c k D e r i v (x , x ∗∗0)
c a l l c h e c k D e r i v (x ∗∗2 , 2∗x)
c a l l c h e c k D e r i v (x ∗∗3 , 3∗x ∗∗2)
. . .

c o n t a i n s

s u b r o u t i n e c h e c k D e r i v (fx , d f x)
r e a l , i n t e n t (i n) : : f x
r e a l , i n t e n t (i n) : : d f x
@asse r tEqua l (dfx , d e r i v (f x))

end s u b r o u t i n e c h e c k D e r i v

end s u b r o u t i n e t e s t 1

Here we lose information about which case(s) failed.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 50 / 90

Parameterized tests (cont’d)

Another approach is to loop within a test

@test
s u b r o u t i n e t e s t ()

r e a l , a l l o c a t a b l e : : x (:)

c a l l c h e c k D e r i v (x , x ∗∗0)
c a l l c h e c k D e r i v (x ∗∗2 , 2∗x)
c a l l c h e c k D e r i v (x ∗∗3 , 3∗x ∗∗2)
. . .

c o n t a i n s

s u b r o u t i n e c h e c k D e r i v (fx , d f x)
r e a l , i n t e n t (i n) : : f x
r e a l , i n t e n t (i n) : : d f x
@asse r tEqua l (dfx , d e r i v (f x))

end s u b r o u t i n e c h e c k D e r i v

end s u b r o u t i n e t e s t 1

Here we lose information about which case(s) failed.

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 50 / 90

Parameterized tests (cont’d)

pFUnit provides custom support for parameterized tests:

Exercise tests across list of user-defined parameters

User EXTEND’s two classes:
I ParameterizedTestCase (analog of TestCase)
I AbstractTestParameter

Annotation argument: testParameters={<expr>}
I Specifies default parmeter list for @testCase
I Override with argument to @test

Failures indicate parameter caused failing assert.
I Provided through type-bound interface toString() on

AbstractTestParameter

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 52 / 90

Example: Parameterized test

...

7 @testParameter
8 type , e x t e n d s (AbstractTestParameter) : : S t r i n g T e s t P a r a m e t e r
9 c h a r a c t e r (:) , a l l o c a t a b l e : : s t r i n g

10 c h a r a c t e r (:) , a l l o c a t a b l e : : l o w e r C a s e
11 c h a r a c t e r (:) , a l l o c a t a b l e : : upperCase
12 c o n t a i n s
13 p r o c e d u r e : : t oS t r i n g
14 end t y p e S t r i n g T e s t P a r a m e t e r

...

66 f u n c t i o n t oS t r i n g (t h i s) r e s u l t (s t r i n g)
67 c l a s s (S t r i n g T e s t P a r a m e t e r) , i n t e n t (i n) : : t h i s
68 c h a r a c t e r (:) , a l l o c a t a b l e : : s t r i n g
69
70 s t r i n g = ’{ ’ // t h i s%s t r i n g // ’ , ’ // t h i s%l o w e r C a s e //

’ , ’ // t h i s%upperCase // ’} ’
71
72 end f u n c t i o n t oS t r i n g

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 54 / 90

Example: Parameterized test (cont’d)

...
16 @testCase (te s tParamete r s = {getParams () } , con s t r u c t o r=

n e w T e s t S t r i n g U t i l i t i e s)
17 type , e x t e n d s (P a r a m e t e r i z e d T e s t C a s e) : : T e s t S t r i n g U t i l i t i e s
18 c h a r a c t e r (:) , a l l o c a t a b l e : : s t r i n g
19 c h a r a c t e r (:) , a l l o c a t a b l e : : l o w e r C a s e
20 c h a r a c t e r (:) , a l l o c a t a b l e : : upperCase
21 end t y p e T e s t S t r i n g U t i l i t i e s

24
25 f u n c t i o n getParams () r e s u l t (params)
26 t y p e (S t r i n g T e s t P a r a m e t e r) , a l l o c a t a b l e : : params (:)
27
28 params = [&
29 S t r i n g T e s t P a r a m e t e r (’ a ’ , ’ a ’ , ’ A ’) , &
30 S t r i n g T e s t P a r a m e t e r (’ b ’ , ’ b ’ , ’ B ’) , &
31 S t r i n g T e s t P a r a m e t e r (’A’ , ’ a ’ , ’ A ’) , &
32 S t r i n g T e s t P a r a m e t e r (’ 1 ’ , ’ 1 ’ , ’ 1 ’) , &
33 S t r i n g T e s t P a r a m e t e r (’+ ’ , ’+ ’ , ’+ ’) , &
34 S t r i n g T e s t P a r a m e t e r (’ a1B2c3D4 ’ , ’ a1b2c3d4 ’ , ’A1B2C3D4 ’)

&
35]
36
37 end f u n c t i o n getParams

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 56 / 90

Example: Parameterized test (cont’d)

...

48 @test
49 s u b r o u t i n e t e s t t o L o w e r C a s e (t h i s)
50 c l a s s (T e s t S t r i n g U t i l i t i e s) , i n t e n t (i n o u t) : : t h i s
51
52 @asse r tEqua l (t h i s%lowerCase , toLowerCase (t h i s%s t r i n g))
53
54 end s u b r o u t i n e t e s t t o L o w e r C a s e
55
56
57 @test
58 s u b r o u t i n e t e s t t o U p p e r C a s e (t h i s)
59 c l a s s (T e s t S t r i n g U t i l i t i e s) , i n t e n t (i n o u t) : : t h i s
60
61 @asse r tEqua l (t h i s%upperCase , toUpperCase (t h i s%s t r i n g))
62
63 end s u b r o u t i n e t e s t t o U p p e r C a s e

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 58 / 90

Example: Parameterized test (cont’d)

To specify a variant list of parameters:

1 @test (te s tParamete r s={getOtherParams ()})
2 s u b r o u t i n e t e s t t o U p p e r C a s e (t h i s)
3 c l a s s (T e s t S t r i n g U t i l i t i e s) , i n t e n t (i n o u t) : : t h i s
4
5 @asse r tEqua l (t h i s%upperCase , toUpperCase (t h i s%s t r i n g))
6
7 end s u b r o u t i n e t e s t t o U p p e r C a s e

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 60 / 90

Combining MPI and Parameterized Test

Good news:
MpiTestCase is a subclass of ParameterizedTest

Extend MpiTestCase

Extend MpiTestParameter (invisible with simple MPI)

Framework augments toString() to ensure that rank/npes is always
included in failure messages

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 62 / 90

Combining MPI and Parameterized Test

Good news:
MpiTestCase is a subclass of ParameterizedTest

Extend MpiTestCase

Extend MpiTestParameter (invisible with simple MPI)

Framework augments toString() to ensure that rank/npes is always
included in failure messages

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 62 / 90

Combining MPI and Parameterized Test

Good news:
MpiTestCase is a subclass of ParameterizedTest

Extend MpiTestCase

Extend MpiTestParameter (invisible with simple MPI)

Framework augments toString() to ensure that rank/npes is always
included in failure messages

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 62 / 90

Combining MPI and Parameterized Test

Good news:
MpiTestCase is a subclass of ParameterizedTest

Extend MpiTestCase

Extend MpiTestParameter (invisible with simple MPI)

Framework augments toString() to ensure that rank/npes is always
included in failure messages

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 62 / 90

Combining MPI and Parameterized Test

Good news:
MpiTestCase is a subclass of ParameterizedTest

Extend MpiTestCase

Extend MpiTestParameter (invisible with simple MPI)

Framework augments toString() to ensure that rank/npes is always
included in failure messages

Tom Clune (ASTG) pFUnit 3.0 - API - Advanced - Session II April 10, 2014 62 / 90

Outline

1 Introduction

2 API - Advanced

3 Test-driven development

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 63 / 90

TDD

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 64 / 90

Old paradigm:

Tests written by separate team (black box testing)

Tests written after implementation

Consequences:

Testing schedule compressed for release

Defects detected late in development ($$)

New paradigm - Test-driven development (TDD)

Developers write the tests (white box testing)

Tests written before production code

Enabled by emergence of strong unit testing frameworks

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 65 / 90

Old paradigm:

Tests written by separate team (black box testing)

Tests written after implementation

Consequences:

Testing schedule compressed for release

Defects detected late in development ($$)

New paradigm - Test-driven development (TDD)

Developers write the tests (white box testing)

Tests written before production code

Enabled by emergence of strong unit testing frameworks

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 65 / 90

Old paradigm:

Tests written by separate team (black box testing)

Tests written after implementation

Consequences:

Testing schedule compressed for release

Defects detected late in development ($$)

New paradigm - Test-driven development (TDD)

Developers write the tests (white box testing)

Tests written before production code

Enabled by emergence of strong unit testing frameworks

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 65 / 90

The TDD cycle

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 66 / 90

Anecdotal Testimony

Many professional SEs are initially skeptical
I High percentage refuse to go back to the old way after only a few days

of exposure.

Some projects drop bug tracking as unnecessary

Often difficult to sell to management
I “What? More lines of code?”

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 67 / 90

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 68 / 90

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 68 / 90

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)

I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 68 / 90

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 68 / 90

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 68 / 90

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.
I But isnt the alternative is even worse?!!

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 68 / 90

Experience to date

TDD has been used heavily within several projects at NASA

Mostly for “infrastructure” portions - relatively little numerical

pFUnit itself

Snowfake - virtual snowfakes; Multi-lattice Snowfake

DYNAMO - spectral MHD code on shperical shell

GTRAJ - offline trajectory integration (C++)

SpF - OO parallel spectral framework

Observations:

∼ 1:1 ratio of test code to source code

Works very well for infrastructure

Learning curve
I 1-2 days for technique
I Weeks-months to wean old habits

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 69 / 90

TDD - Talking Points

How large of a step at each cycle?

I Gauge by time
I If steps are going quickly try larger changes
I If iteration > 10 min, start iteration over (repository is your friend)

Triangulation
I Start with simple tests
I Add tests that probe weaknesses in existing implementation
I Stop when it is apparent than new tests will all pass

Don’t test constructors and accessors

Commit/backup frequently

Use synthetic data to make results obvious

Private vs testable
I One module has everything PUBLIC
I 2nd module is default private - just export the things you want PUBLIC
I Tests use first module; application uses 2nd.

Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 70 / 90

TDD - Talking Points

How large of a step at each cycle?
I Gauge by time
I If steps are going quickly try larger changes
I If iteration > 10 min, start iteration over (repository is your friend)

Triangulation
I Start with simple tests
I Add tests that probe weaknesses in existing implementation
I Stop when it is apparent than new tests will all pass

Don’t test constructors and accessors

Commit/backup frequently

Use synthetic data to make results obvious

Private vs testable
I One module has everything PUBLIC
I 2nd module is default private - just export the things you want PUBLIC
I Tests use first module; application uses 2nd.

Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 70 / 90

TDD - Talking Points

How large of a step at each cycle?
I Gauge by time
I If steps are going quickly try larger changes
I If iteration > 10 min, start iteration over (repository is your friend)

Triangulation
I Start with simple tests
I Add tests that probe weaknesses in existing implementation
I Stop when it is apparent than new tests will all pass

Don’t test constructors and accessors

Commit/backup frequently

Use synthetic data to make results obvious

Private vs testable
I One module has everything PUBLIC
I 2nd module is default private - just export the things you want PUBLIC
I Tests use first module; application uses 2nd.

Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 70 / 90

TDD - Talking Points

How large of a step at each cycle?
I Gauge by time
I If steps are going quickly try larger changes
I If iteration > 10 min, start iteration over (repository is your friend)

Triangulation
I Start with simple tests
I Add tests that probe weaknesses in existing implementation
I Stop when it is apparent than new tests will all pass

Don’t test constructors and accessors

Commit/backup frequently

Use synthetic data to make results obvious

Private vs testable
I One module has everything PUBLIC
I 2nd module is default private - just export the things you want PUBLIC
I Tests use first module; application uses 2nd.

Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 70 / 90

TDD - Talking Points

How large of a step at each cycle?
I Gauge by time
I If steps are going quickly try larger changes
I If iteration > 10 min, start iteration over (repository is your friend)

Triangulation
I Start with simple tests
I Add tests that probe weaknesses in existing implementation
I Stop when it is apparent than new tests will all pass

Don’t test constructors and accessors

Commit/backup frequently

Use synthetic data to make results obvious

Private vs testable
I One module has everything PUBLIC
I 2nd module is default private - just export the things you want PUBLIC
I Tests use first module; application uses 2nd.

Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 70 / 90

TDD - Talking Points

How large of a step at each cycle?
I Gauge by time
I If steps are going quickly try larger changes
I If iteration > 10 min, start iteration over (repository is your friend)

Triangulation
I Start with simple tests
I Add tests that probe weaknesses in existing implementation
I Stop when it is apparent than new tests will all pass

Don’t test constructors and accessors

Commit/backup frequently

Use synthetic data to make results obvious

Private vs testable

I One module has everything PUBLIC
I 2nd module is default private - just export the things you want PUBLIC
I Tests use first module; application uses 2nd.

Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 70 / 90

TDD - Talking Points

How large of a step at each cycle?
I Gauge by time
I If steps are going quickly try larger changes
I If iteration > 10 min, start iteration over (repository is your friend)

Triangulation
I Start with simple tests
I Add tests that probe weaknesses in existing implementation
I Stop when it is apparent than new tests will all pass

Don’t test constructors and accessors

Commit/backup frequently

Use synthetic data to make results obvious

Private vs testable
I One module has everything PUBLIC
I 2nd module is default private - just export the things you want PUBLIC
I Tests use first module; application uses 2nd.

Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 70 / 90

TDD - Talking Points

How large of a step at each cycle?
I Gauge by time
I If steps are going quickly try larger changes
I If iteration > 10 min, start iteration over (repository is your friend)

Triangulation
I Start with simple tests
I Add tests that probe weaknesses in existing implementation
I Stop when it is apparent than new tests will all pass

Don’t test constructors and accessors

Commit/backup frequently

Use synthetic data to make results obvious

Private vs testable
I One module has everything PUBLIC
I 2nd module is default private - just export the things you want PUBLIC
I Tests use first module; application uses 2nd.

Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 70 / 90

TDD - process reminder

1 Extend test (new test procedure, new assert, etc)

2 Verify test fails Red Light

3 Alter implementation to pass test

4 Refactor to eliminate redundancy Green Light

5 Repeat

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 71 / 90

TDD Demonstration: Factorial

Instructions:

Use TDD to implement factorial function

To make it interesting, we’ll add tests to guard against illegal inputs and
overflow.

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 72 / 90

Change into the directory ./Exercises/TDD Warmup

Set PFUNIT for a serial build

% make tests (ensure that make is working for you)

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 74 / 90

./Exercises/TDD_Warmup

TDD Demonstration: Dynamical System

Instructions:

We are going to build a set of classes that will integrate a simple
dynamical system:

State of system is specified by a scalar, t, and 2 vectors: x and v

Denote timestep with h

Force (F) on system is any function of x , v , t

Initial integration will be via forward Euler: Yn+1 = Yn + hF (Yn, t)

Then we will “upgrade” to RK4

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 75 / 90

Possible unit tests for Dynamical System

Forward Euler integration

F (t) = 0, v(t = 0) = 0 leaves xn+1 = x0

F (t) = 0, v(t = 0) = v0 has xn+1 = nhv0

F (t) = 0, v(t = 0) = v0 has vn+1 = vn

F (t) = F (t = 0) = a, v(t = 0) = x(t = 0) = 0 has vn+1 = vn + ha

vn+1 = vn + hF (tn)

xn+1 = xn + hvn

If h = 0, xn = x0 and vn = v0 for any F

Vary number of dimensions

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 77 / 90

Change into the directory ./Exercises/TDD DnamicalSystem

Set PFUNIT for a serial build

% make tests (ensure that make is working for you)

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 79 / 90

./Exercises/TDD_DnamicalSystem

Runge-Kutta (RK4)

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

k1 = f (tn, yn)

k2 = f (tn +
1

2
h, yn +

h

2
k1)

k3 = f (tn +
1

2
h, yn +

h

2
k2)

k3 = f (tn + h, yn + hk3)

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 81 / 90

Demo: Build a Linear 1D Interpolator

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 82 / 90

Interpolation ...

What are some potential tests?

Bracket: Find i such that xi <= x < xi+1

Computing weights:

wa =
xi+1 − x

xi+1 − xi
wb = 1− wa

Combining weighted sum: y = wayi + wbyi+1

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 83 / 90

Interpolation ...

What are some potential tests?

Bracket: Find i such that xi <= x < xi+1

Computing weights:

wa =
xi+1 − x

xi+1 − xi
wb = 1− wa

Combining weighted sum: y = wayi + wbyi+1

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 83 / 90

Interpolation ...

What are some potential tests?

Bracket: Find i such that xi <= x < xi+1

Computing weights:

wa =
xi+1 − x

xi+1 − xi
wb = 1− wa

Combining weighted sum: y = wayi + wbyi+1

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 83 / 90

Interpolation ...

What are some potential tests?

Bracket: Find i such that xi <= x < xi+1

Computing weights:

wa =
xi+1 − x

xi+1 − xi
wb = 1− wa

Combining weighted sum: y = wayi + wbyi+1

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 83 / 90

Tests for finding enclosing bracket

{x1, x2, x3} x Expect Comment

{1.,2.,3.} 1.5 i = 1 vanilla
{1.,2.,3.} 2.5 i = 2 vary x
{1.,2.,4.} 3.0 i = 2 irregular spacing
{1.,2.,4.,5.} 2.5 i = 2 vary # of nodes
{1.,2.,3.} 2.0 i = 2 edge case
{1.,2.,3.} 1.0 i = 1? edge case
{1.,2.,3.} 3.0 i = 2? edge case
{1.,2.,3.} 0.5 exception? out-of-bounds
{3.,2.,1.} 1.5 exception? support inverted order?

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 84 / 90

Tests for compute weights

xi xi+1 x expected Comment

1. 2. 1.0 wa = 1.0 left end
1. 2. 2.0 wa = 0.0 right end
1. 2. 1.5 wa = 0.5 middle
1. 3. 1.5 wa = 0.75 vary interval
1. 2. 0.0 wa = ? out-of-bounds
1. 1. 1.0 ? duplicate node

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 85 / 90

Tests for combine weights

wa ya yb expected Comment

1. 1. 2. y = 1.0 left end
0. 1. 2. y = 2.0 right end

0.5 1. 2. y = 1.5 middle
0.5 3. 2. y = 2.5 vary data

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 86 / 90

Live Demo: Cross Fingers

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 88 / 90

References

pFUnit: http://sourceforge.net/projects/pfunit/

Tutorial materials
I https://modelingguru.nasa.gov/docs/DOC-1982
I https://modelingguru.nasa.gov/docs/DOC-1983
I https://modelingguru.nasa.gov/docs/DOC-1984

TDD Blog
https://modelingguru.nasa.gov/blogs/modelingwithtdd

Test-Driven Development: By Example - Kent Beck

Mller and Padberg,”About the Return on Investment of Test-Driven
Development,” http://www.ipd.uka.de/mitarbeiter/muellerm/

publications/edser03.pdf

Refactoring: Improving the Design of Existing Code - Martin Fowler

JUnit http://junit.sourceforge.net/

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 89 / 90

http://sourceforge.net/projects/pfunit/
https://modelingguru.nasa.gov/docs/DOC-1982
https://modelingguru.nasa.gov/docs/DOC-1983
https://modelingguru.nasa.gov/docs/DOC-1984
https://modelingguru.nasa.gov/blogs/modelingwithtdd
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://junit.sourceforge.net/

Acknowledgements

This work has been supported by NASA’s High End Computing
(HEC) program and Modeling, Analysis, and Prediction Program.

Many thanks to team members Carlos Cruz and Mike Rilee for
helping with implementation, regression testing and documentation.

Special thanks to members of the user community that have made
contributions.

I Sean Patrick Santos
I Matthew Hambley
I Evan Lezar

Tom Clune (ASTG) pFUnit 3.0 - Test-driven development - Session II April 10, 2014 90 / 90

	Introduction
	Overview

	API - Advanced
	API: pFUnit test Hierarchy
	API: Misc
	Parser: Advanced

	Test-driven development

